

A232811


Decimal expansion of the surface index of a regular octahedron.


9



5, 7, 1, 9, 1, 0, 5, 7, 5, 7, 9, 8, 1, 6, 1, 9, 4, 4, 2, 5, 4, 4, 4, 5, 3, 9, 7, 2, 3, 9, 6, 5, 6, 2, 9, 4, 6, 6, 3, 7, 4, 4, 2, 5, 6, 7, 9, 0, 2, 0, 8, 1, 2, 3, 9, 6, 5, 5, 8, 5, 7, 2, 4, 1, 5, 5, 2, 5, 0, 7, 1, 7, 4, 3, 8, 6, 1, 7, 0, 2, 4, 8, 0, 4, 1, 8, 1, 1, 4, 3, 0, 3, 9, 2, 0, 8, 1, 6, 7, 7, 6, 5, 3, 2, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, the surface area of a regular octahedron with unit volume. Among Platonic solids, surface indices decrease with increasing number of faces: A232812 (tetrahedron), 6.0 (cube = hexahedron), this one, A232810 (dodecahedron), and A232809 (icosahedron).
An algebraic integer of degree 6 with minimal polynomial x^6  34992.  Charles R Greathouse IV, Apr 25 2016


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..1000
Wikipedia, Platonic solid


FORMULA

sqrt(3)*6^(2/3).
A010469/A131594^(2/3).


EXAMPLE

5.7191057579816194425444539723965629466374425679...


MATHEMATICA

RealDigits[Sqrt[3]Surd[36, 3], 10, 120][[1]] (* Harvey P. Dale, Mar 12 2015 *)


PROG

(PARI) sqrtn(34992, 6) \\ Charles R Greathouse IV, Apr 25 2016


CROSSREFS

Cf. A010469, A131594, A232808 (surface index for a sphere), A232809, A232810, A232812.
Sequence in context: A155066 A343480 A251735 * A316132 A261159 A145737
Adjacent sequences: A232808 A232809 A232810 * A232812 A232813 A232814


KEYWORD

nonn,cons,easy


AUTHOR

Stanislav Sykora, Dec 01 2013


STATUS

approved



